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Abstract

To treat data from temperature modulated differential scanning calorimetry (TMDSC) in terms of complex or reversing heat

capacity one should know heat transfer and apparatus in¯uences on experimental results. On the other hand one should pay

attention that the response is linear because this is a prerequisite for data evaluation. The reason for non-linear thermal

response is discussed and its in¯uence on complex heat capacity determination is shown. The criterion for linear response is

proposed. This allows to choose correct experimental conditions for any complex heat capacity measurements. In the case

when these conditions cannot be ful®lled because of experimental restrictions one can estimate the in¯uence of non-linear

response on measured value of complex or reversing heat capacity. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Besides other dynamic calorimetric methods like

AC [1±3] and 3! [4,5], temperature modulated differ-

ential scanning calorimetry (TMDSC), introduced by

Reading and co-workers [6] as an extension of the

conventional DSC, gives a possibility to measure

complex heat capacity1 [7,8]. It is well understood

however, that the value for complex heat capacity

cp(!) being given by the ratio between vector ampli-

tudes of measured heat ¯ow rate and heating rate

should be corrected for heat transfer effects. This will

be discussed in detail in part 2 of this paper [9]. But

another and more general point is that the response of

the system should be linear if one wants to treat data in

terms of complex heat capacity. Often for dynamic

calorimetric measurements, especially in the vicinity

of phase transitions, the response of the system is non-

linear, i.e. doubling the perturbation amplitude (e.g.

temperature) does not necessarily lead to doubling the

response amplitude (e.g. heat ¯ow). In this case the

value of cp(!) depends not only on frequency but also

on perturbation amplitude. There is no generally

accepted criterion for linear thermal response. One

can argue [10] that in calorimetric measurements

external perturbation is �T/T and except for phenom-

ena occurring at low temperatures �T/T is usually

small and one can utilize the linear response theory.

Sometimes one says, referring to TMDSC measure-

ments, that one should use temperature perturbation as

small as possible [11,12], but at the same time under-
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lying scanning rate should be so low, that changes in

mean temperature during one modulation period is

smaller than amplitude of temperature modulation

[13,14]. These conditions, being rather qualitative,

depend a lot on sample in question. On the other hand

they can considerably restrict the range of possible

experiments if one wish to get linear response. There-

fore it is of the importance to evaluate quantitatively

non-linear part of the thermal response and its in¯u-

ence on measured data.

In the following paper we examine the in¯uence of

non-linear thermal response on measured values of

complex heat capacity and propose some criteria for

linearity of TMDSC measurements. It is assumed that

experimental uncertainty of cp(!) determination

comes from non-linear response only. Heat ¯ow and

temperature calibration is beyond the scope of the

paper.

2. TMDSC data treatment

The response "(t) of a system to an external per-

turbation �(t) can be written as

"�t� � K̂�t0; t���t�; (1)

where K̂�t0; t�2 is an operator which transforms a set

of functions �(t) to a set of functions "(t) and where

t 2 t0; 1� �. (One can include in K̂�t0; t� history

dependence by making t0!ÿ1) In dynamic calori-

metric measurements from physical point of view

temperature T(t) serves as a driving force and heat

Q(t) is measured as a response, or vice versa [10].

Because of construction principle TMDSC, as well as

DSC, measures time derivative of the heat and on the

other hand temperature change serves as a driving

force. Then formally one can consider heating rate,

q�t� � _T�t�, as the external perturbation and heat ¯ow

rate, ��t� � _Q�t�, as the response. Since q(t) is only

derivative of temperature it represents possible tem-

perature±time program only to some arbitrary con-

stant. Then operator K̂�t0; t� can depend on starting

temperature T0 � T(t0) so that Eq. (1) becomes

��t� � K̂ T0; t0; t� � q�t�: (2)

Consider farther, the set of experiments with the

same starting temperature T0. If K̂�t0; t� is linear and

stationary (see Eq. (8)), then one can rewrite Eq. (2)

as convolution product in time space,

��t� � C�t� � q�t�; (3)

where C�t�� � K̂�t�. Applying next the Fourier trans-

form, F f� � !� � � f �t�; ei�!;t�ÿ �
, one can resolve con-

volution product as [15]

F �� � � F C � q� � � F C� �F q� �; (4)

where F[C] is a function of angular frequency !,

which can be calculated as

F�C��!� � F����!�
F�q��!� � m ceff�!�: (5a)

This ratio one can treat as an effective or apparent

frequency dependent heat capacity m ceff(!), where m

is sample mass. Assumption of linear and stationary

response is used here to represent operator equation,

Eq. (2), as simple ratio in frequency domain, Eq. (5a).

How to get the correct value of sample complex heat

capacity from this ratio is described in [9].

In TMDSC measurements one can consider the

following values: tp�2�/! ± modulation period,

A� � jF����!�j ± heat ¯ow amplitude, Aq�|F[q](w)|

- heating rate amplitude, AT � jF�T ��!�j � Aq=! ±

amplitude of temperature oscillations, arg F����!�f gÿ
arg F�q��!�f g � arg F�C���!�f g ± phase shift between

q(t) and �(t). In addition to periodic part of q(t) and of

�(t) one can consider also mean values over one

period: q0 ± underlying heating rate, �underlying ±

underlying heat ¯ow, hTi � T0 � q0 t ÿ t0� � ± mean

temperature. In DSC measurements total heat capacity

is determined as:

m cp�q0� � �underlying

q0

: (5b)

Farther, unless another speci®es, we will discuss

only effective speci®c heat capacity at given fre-

quency, cp(!), determined by Eq. (5a) not by

Eq. (5b), i.e. cp(!)�ceff(!).

3. Non-linear response

For general case of non-linear response one can

separate the response into linear, quadratic, cubic, etc.2Upper index ^ stands for operators.
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parts so that Eq. (1) becomes:

"�t�� K̂��t�� K̂1��t� � K̂2��t� � K̂3��t� � � � �
(6)

where K̂1 is a linear operator K̂1���t� � � K̂1��t� for

any complex number �, and analogous K̂n���t� �
�n K̂n��t�. The presence of higher order terms (n>1) in

the response will be called non-linearity. Even if the

perturbation �(t) is pure sinusoidal function, non-

linearity results some higher harmonics in the res-

ponse "(t). At any given perturbation �(t) one can

choose such small perturbations ��(t), where j�̂j � 1

(or more correctly j�j � min
n>1
f

����������������������������������
jK1��t�j=jKn��t�jnÿ1

p
g,

that higher order terms become negligible in compar-

ison with linear one:

"�t� � K̂���t� � � K̂1 � �2 K̂2��t�
� �3K̂3��t� � � � � � � K̂1��t�: (7)

The same happens with higher harmonics: they

become negligible in comparison with ®rst one. Then

one can consider the response as linear.

However, it can be possible that at any small

perturbation there are appreciable higher harmonics

in the response. Response can become inharmonic

under any small harmonic perturbation when system

properties change with time independently of pertur-

bation. In this case operator describing the response is

non-stationary. Remember that operator K̂�t0; t� is

stationary then the following condition is ful®lled

for any time shift t1 and any perturbation �(t):

K̂�t0; t���t� � K̂�t0 � t1; t � t1���t�
� K̂�t ÿ t0���t�; (8)

where t0 denotes the starting point of experiment, so

that t 2 t0; 1� �. Then for non-stationary operator one

can write:

K̂�t0 � t1; t � t1� � �̂�t0; t1� K̂�t0; t�; (9)

where operator �̂�t0; t1� describes evolution of the

system properties with time. In real systems such

changes are continuous, that means �̂�t0; t1�f �t� !
f �t� at t1! 0 for any function f(t) (or equivalently

�̂�t0; t1� ! Î at t1! 0, where IÃ is unity operator).

Then one can write in ®rst approximation for small t1:

�̂�t0; t1� � t1
_̂��t0� � Î; (10)

where _̂��t0� � limt1!0��̂�t0; t1� ÿ Î�=t1 is an opera-

tor describing the rate of system evolution. Under

harmonic perturbation during one period tp changes

for �̂�t0; tp� � tp �̂�t0� � Î, for examples see Figs. 9

and 10. This leads to inharmonic response and as a

result to the appearance of higher harmonics and to the

uncertainty in determination of ®rst harmonic:

�h1

h1

� tpj _̂��t0�j; (11)

where h1 in shorter form denotes ®rst harmonic of the

response "(t), h1 � F�"��!�. One can see from

Eq. (11) that the smaller the period of perturbations

and/or the rate of system evolution the smaller is the

in¯uence of non-stationarity.

Schematically representation of the conditions of

linearity/non-linearity and stationarity/non-stationar-

ity is shown in Fig. 1, where response "(t) to some step

perturbation ��t� � ���t ÿ ti� is plotted. One can see

that under condition of linearity increasing of pertur-

bation leads to proportional increasing of the response

that is not the case under non-linear conditions. Under

stationary condition correlation between the perturba-

tion and the response is invariant to the time shift.

Under non-stationary conditions this correlation

depends on absolute starting time. Both responses

stationary and non-stationary can be linear or non-

linear. And both linear and non-linear responses can be

stationary or non-stationary. In frequency domain both

Fig. 1. Schematically representation of the conditions of linearity/

non-linearity and stationarity/non-stationarity.
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non-linearity and non-stationarity lead to the appear-

ance of higher harmonics and to the uncertainty in

determination of the ®rst harmonics.

4. Linearity of the apparatus

Before proceeding to experimental sections one

should say a few words about linearity of the equip-

ment. The linearity of DSC has been proved in the

sense that response can be represented as convolution

product of perturbation with Green's functions [16]. In

TMDSC linearity can be checked in the frequency

domain i.e. by looking at higher harmonics in the

response under harmonic perturbation. Under condi-

tions that sample response is linear, e.g. in the molten

state, non-linearity (higher harmonics) comes only

from the instrument. Fig. 2 shows the result from such

measurement where the amplitude of second harmo-

nic h2 � F[�](2!) of the measured heat ¯ow �(t) is

plotted versus modulated heating rate amplitude

Aq � !AT. Note that heat ¯ow at given temperature

modulation amplitude AT is proportional to the angular

frequency !. Therefore, analogous plots over AT would

be different at different frequencies. One can see that

by decreasing the amplitude of heating rate perturba-

tion the amplitude of second harmonic decreases

proportionally to A2
q but never becomes less than

�3 mW. This is the noise level of the instrument. Such

a noise contains wide spectrum (in principle `̀ white''

noise) therefore there is the same lower limit (�3 mW)

for any harmonics. Now if one looks at normalized

value of higher harmonics, Fig. 3, one can see what

happens: decreasing of heating rate amplitude

decreases the non-linearity only to some extend then

noise starts to dominate. In Fig. 3 this corresponds to

the amplitude Aq�11 k/min. Under smaller ampli-

tudes signal-to-noise ratio decreases ± this would

not improve the accuracy of heat capacity determina-

tion. From such ®gures one can estimate instrument

contribution to the non-linearity for given experimen-

tal conditions. Harmonic distortion of the apparatus �
can be considered about 1% under heating rate ampli-

tude in the range 2 K minÿ1�Aq�60 K minÿ1. This

value ��0.01 one can take as an accuracy limit of the

dynamic heat capacity measurements. Measuring hea-

vier sample, i.e. larger sample heat capacity, one can

increase signal-to-noise ratio and improve lower limit

of heating rate. Making larger temperature difference

between block and ovens (for power compensated

DSC) one can increase higher limit of heating rate

amplitude, because then there will be less problems

with fast cooling during cooling cycle of modulation.

And last remark: higher harmonics can be smaller than

that shown in Fig. 3 at extreme high frequencies for

TMDSC, let us say at tp<20 s, then higher frequency

Fig. 2. Amplitude of second harmonic h2 (open circles) versus

heating rate amplitude Aq. Quadratic fit function (solid line) and

noise level (dashed line) are also shown. Polystyrene sample of

mass ms�4.435 mg was measured by PE DSC-2 in the melt

(T0�400 K), tp�100 s, sinusoidal temperature oscillation.

Fig. 3. Normalized amplitude of second harmonic h2 (open circles)

and third harmonic h3 (open triangle) versus heating rate amplitude

Aq. First four points of second harmonic are fitted by hyperbola

(solid line). The same experimental conditions as in Fig. 2.
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part of heat ¯ow spectrum is damped by heat transfer

problems and by low-pass ®lters of the electronics.

Applying saw-tooth temperature oscillation (i.e.

meander-shape heating rate pro®le) heat ¯ow already

has some odd harmonics. This is a small disadvantage

of saw-tooth modulation in comparison with sinusoi-

dal one when one wants to compare spectra to see non-

linear response. But nevertheless by looking at even

harmonics one can check such type of non-linear

response which results asymmetry of the heat ¯ow

pro®le.

5. Non-linearity in TMDSC measurements

Consider an example of reversible melting during

every modulation period, as shown in Fig. 4. Calcu-

lated amplitude of heat ¯ow A� is higher than the heat

¯ow due to phonon heat capacity (i.e. the heat ¯ow

outside the melting and crystallization region) because

it contains a large contribution from the melting and

crystallization enthalpy. One can double the tempera-

ture amplitude at a given modulation frequency, i.e.

double the heating rate amplitude, but would get the

same response in the ®rst harmonic of the heat ¯ow

since the melting and crystallization areas do not

change. Then the calculated value of the complex

heat capacity would be almost half of the initial

one. One can take a half of the heating rate amplitude

and would get almost double value of complex heat

capacity. It is clear that in this case one has non-

linearity ± too large perturbation. Note that under

linear response heat capacity does not depend on

modulation amplitude (whether temperature or heat-

ing rate). Non-linearity here is caused by strong

temperature dependence of excess heat capacity at

the transition. In ®rst approximation with small step in

temperature �T one can write for changes in total

speci®c heat capacity:

�cp � dcp

dT
�T : (12)

If there are some time dependent processes in the

transition then temperature derivative of heat capacity

dcp=dT depends on given heating rate q0. One can

rewrite Eq. (12) for temperature modulated measure-

ment at given frequency as:

�cp�!� � dcp�!�
dT�!� AT ; (13)

where now step in temperature is temperature ampli-

tude AT and dcp�!�=dT�!� is temperature amplitude

derivative of complex heat capacity. If relative

changes of complex heat capacity in the same order

or smaller than harmonic distortion of the apparatus

�, i.e.

�cp�!�
cp�!� �

1

cp�!�
dcp�!�
dT�!� AT � �; (14)

then within the experimental uncertainties one can

consider the response as linear. For the case shown in

Fig. 3 one would reach conditions of linearity maybe

only in millikelvin range of temperature amplitudes

AT. Only then one can speak about complex heat

capacity at nematic±isotropic transition.

Another example of non-linearity can be seen in

temperature modulated scan measurement in melting

region of polymers. Since crystallization and melting

rates of polymers are quite different [18] large part of

the sample which has been melted during heating

cycle (q(t)>0) cannot be crystallized during cooling

cycle (q(t)<0). This leads to asymmetry in the heat

¯ow rate, as shown in Fig. 5 (thin line). By choosing

smaller heating rate perturbation on top of underlying

heating rate q0 one can get symmetric response (thick

lines in the ®gure). Asymmetry in heat ¯ow rate results

higher harmonics after Fourier transform. Fig. 6

shows the normalized values for second and third

Fig. 4. Measured heat flow for the nematic-isotropic phase

transition (during heating) and isotropic-nematic phase transition

(during cooling) of 8OCB by using a quasi-isothermal saw-tooth

temperature modulation [17].
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harmonics of measured heat ¯ow rate in analogous

TMDSC measurements. Important point here is not

non-linear part itself but its in¯uence on ®rst harmonic

determination. Results for the ®rst harmonic normal-

ized by Eq. (5a) from the same experiment are pre-

sented in Figs. 7 and Fig. 8. One can see that 10% of

higher harmonics at modulated heating rate amplitude

Aq�6.3 K minÿ1 (see Fig. 6) results 10% decrease of

measured modulus of cp(!) and also decrease of

argument of cp(!). In this case to avoid asymmetry

in the heat ¯ow rate ®rst one should eliminate crystal-

lization by choosing heating only condition so that

Aq�! AT<q0 i.e.

q�t� � q0 � Re Aq eÿi!t
ÿ �

> 0; (15)

where q0 is a constant underlying heating rate. If

during melting some re-crystallization or re-organiza-

tion happen, that is also slower than melting, total

Fig. 5. TMDSC scan measurement in melting region of poly(ether-

etherketone) (PEEK Victrex 381G). Different heat flow rate curves

�(t) (multiplied by some factors for better comparison) correspond

to different heating rate profiles q(t): thin line ± heating-cooling;

dotted line ± heating-isotherm; thick line ± heating only. Setaram

DSC 141, ms�169 mg, q0�0.1 K minÿ1, tp�20 min, saw-tooth

temperature oscillations.

Fig. 6. Normalized amplitude of second, h2, and third, h3,

harmonics versus amplitude of modulated heating rate, Aq, for

temperature modulated scan measurements in the melting region of

PEEK. Perkin-Elmer DSC 2, ms�26 mg, q0�2 K minÿ1, tp�1 min,

sinusoidal temperature oscillations.

Fig. 7. Modulus of specific heat capacity cp(!) versus temperature

at different amplitude of modulated heating rate Aq for temperature

modulated scan measurements in the melting region of PEEK.

Perkin-Elmer DSC 2, ms�26 mg, q0�2 K minÿ1, tp�1 min,

sinusoidal temperature oscillations.

Fig. 8. Argument of cp(w) versus temperature at different

amplitude of modulated heating rate Aq for temperature modulated

scan measurements in the melting region of PEEK. Perkin-Elmer

DSC 2, ms�26 mg, q0�2 K minÿ1, tp�1 min, sinusoidal tempera-

ture oscillations.
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speci®c heat capacity determined by common DSC

run will be different for different underlying heating

rates q1 and q2: cp(q1) 6�cp(q2). Since�(t)�m cp q(t) (m

is sample mass) for underlying heat ¯ow rate

�(t)��underlying and underlying heating rate q(t)�q0

one can write from Eq. (2):

K̂�q�t� 6� �K̂q�t�; (16)

where q(t)�q1, ��q2/q1. Eq. (16) holds not only for

constant underlying heating rate but also for periodic

heating rates q(t) and � q(t). Then analogous to

Eq. (13) after Fourier transform at given frequency

non-linear part equals

�cp�!� � dcp�!�
dq�!� Aq; (17)

where dcp�!�=dq�!� is the heating rate amplitude

derivative of complex speci®c heat capacity. In that

case heating only condition, Eq. (15), can be not

enough to get linearity. But one can choose such a

small perturbation amplitude Aq that

�cp�!�
cp�!� �

1

cp�!�
dcp�!�
dq�!� Aq � �; (18)

where � denotes given experimental accuracy (har-

monic distortion of the apparatus). Under such con-

ditions one reaches linearity. In Figs. 6±8 heating only

condition corresponds to Aq<2 K minÿ1, but linearity

is reached at Aq�0.6 K minÿ1, there amplitude of

second harmonic does not depend on Aq. Calculated

modulus of cp as well as phase angle coincides at

Aq�0.3 K minÿ1 and 0.6 K minÿ1. The remaining

higher harmonics here are caused by non-stationarity

(see next section).

6. Non-stationarity in TMDSC measurements

In this section assume that conditions of linearity,

Eqs. (14) and (18), are ful®lled. Under stationary

conditions, Eq. (8), it is enough to calculate at given

frequency only one value of complex speci®c heat

capacity cp(!). However system properties can change

with time independently on perturbation, e.g. due to

overall crystallization or chemical reactions, evapora-

tion of the sample, apparatus drift with time and so on.

Under such conditions the value of complex speci®c

heat capacity depends on time, cp(w)�cp(w, t). In this

case one assigns to given time t the mean value of

cp(!) over one modulation period tp. Then the uncer-

tainty in determination of cp(!), according to Eq. (11),

is

�cp�!�
cp�!� � tp

1

cp�!�
dcp�!�

dt
: (19)

In addition to possible changes with time system

properties can also change due to scanning of the mean

temperature in temperature modulated scan measure-

ments. Since mean temperature is connected with time

as hTi � T0 � q0�t ÿ t0� formally one can rewrite

Eq. (19) as:

�cp�!�
cp�!� � q0 tp

1

cp�!�
dcp�!�
dhTi : (20)

If cp(!) depends both on time and on temperature,

cp(!)�cp(!, t, T), then dcp�!�=dhTi is different for

different underlying heating rate q0. The point here is

not the separation of time and temperature evolution

of cp(!) (that can be done by measuring with different

underlying heating rates), but uncertainties of cp(!)

determination due to such evolution. From Eqs. (19)

and (20) one can write the condition of stationarity as:

�cp�!�
cp�!� � tp

1

cp�!�
dcp�!�

dt
� � (21)

or

�cp�!�
cp�!� � q0 tp

1

cp�!�
dcp�!�
dhTi � �; (22)

where again � denotes given experimental accuracy

(harmonic distortion of the apparatus). At given rate of

system evolution dcp�!�=dt one should use only such

modulation periods tp that stationary condition,

Eq. (21), is ful®lled. Fig. 9 shows the results from

quasi-isothermal (q0�0) TMDSC measurement in

melting region of semi-crystalline polymer. In such

measurements the relaxation of the system does not

depend on given temperature perturbation [19]. One

can see by eye that at shorter modulation period heat

¯ow rate is more or less symmetric and one can speak

about cp(!) and its relaxation with time. On the

contrary at large period the value of cp(!) at the

beginning of the relaxation is very arbitrary.

If modulation period is given and stationarity con-

dition is not ful®lled then one should try to decrease
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rate of system changes if acceptable, e.g. by choosing

higher mean temperature for measurement of crystal-

lization from the melt to slow down crystallization

rate. At scan measurements one should decrease

underlying heating rate q0. The last case is represented

in Figs. 10 and 11 where results from TMDSC mea-

surements in melting region of PEEK are shown.

Fig. 10 shows evolution of cp(!) with temperature

(note again, that such temperature dependence can

contain partly time dependence, with cannot be sepa-

rated from one scan measurement) and normalized

value of second harmonic h2. At 630 K the sample is

already in the molten state that means linear sample

response. Then under this experimental conditions

harmonic distortion of the apparatus ��2%. Condi-

tions of linearity, Eq. (18), are ful®lled. But around

620 K there are relatively large changes in cp(!), i.e.

large dcp�!�=dhTi. This non-stationarity results the

peak of 5% in the second harmonic. Fig. 11 shows the

height of this peak versus underlying heating rate q0.

According to Eq. (22) there should be linear depen-

dence of non-stationarity on underlying heating rate.

This one can see in the ®gure for q0�4 K minÿ1. The

last point, q0�8 K minÿ1, deviates from straight line

due to approximation made in Eq. (11) for small

modulation periods or small rate of system evolution.

At q0�8 K minÿ1 second harmonic reached the value

of 30% (so there is an error of 30% in determination of

®rst harmonic). Under such conditions one can use the

smallest possible temperature modulations but still

have 30% of harmonic distortion, because the reason

of that is not a large perturbation but non-stationarity.

Then to eliminate non-linear part one should decrease

underlying heating rate. At q0�0.5 K minÿ1 second

harmonic equals only 2% of the ®rst. At the same time

harmonic distortion of the apparatus ��2% ± condi-

tion of stationarity, Eq. (22), is ful®lled.

Fig. 9. Heat flow rate (without empty pan correction) in quasi-

isothermal melting of poly("-caprolactone) PCL for two different

modulation periods. Mean temperature T0�335 K was reached by

heating the sample from semi-crystalline state. Perkin-Elmer Pyris

1, ms�76 mg, AT�0.5 K, saw-tooth temperature oscillations.

Fig. 10. Modulus of complex specific heat capacity cp(!) and

normalized amplitude of second harmonic h2 versus temperature

for temperature modulated scan measurement in the melting region

of PEEK. Perkin-Elmer DSC Pyris 1, ms�1616 mg, q0�2 K minÿ1,

tp�1 min, Aq�0.2 K minÿ1, saw-tooth temperature oscillations.

Fig. 11. Normalized amplitude of second harmonic h2 versus

underlying heating rate q0 for temperature modulated scan

measurement in the melting region of PEEK. Perkin-Elmer DSC

Pyris 1, ms�16 mg, tp�1 min, Aq�0.2 K minÿ1, saw-tooth tem-

perature oscillations.
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7. Discussion

In previous sections we discussed mainly the sec-

ond harmonic as the measure of non-linear response.

Of course one should consider all higher harmonics.

Regardless of the reason non-linear response causes a

systematic error in determination of ®rst harmonic,

which can be written as

�h1

h1

�
P

n>1 hn

h1

; (23)

where hn denotes nth harmonic. However, in some

dynamic calorimeters from construction reasons it

could be dif®cult to apply such check of linear

response. E.g. in 3! method measured signal always

has spectrum with odds harmonics even at linear

thermal response from the sample.

One cannot say in advance which perturbation is

supposed to be large and which is small. For example

in Fig. 3 the best linearity was at heating rate ampli-

tude Aq�11 K minÿ1 that corresponds to temperature

amplitude AT�3 K. In the other measurement, Fig. 4,

to get linear response one should use temperature

perturbation in millikelvin range to stay within the

transition. The range of acceptable perturbation ampli-

tude depends on sample in question and is given by

conditions of linearity, Eqs. (14) and (18).

The same holds for stationarity: acceptable range of

modulation periods and underlying heating rates

depends on how fast sample heat capacity changes

with time and/or with temperature. For example at

tp�1 min underlying heating rate could be

0.5 K minÿ1 for PEEK sample, see Fig. 11, to meet

conditions of stationarity, but it should be much

smaller for PCL sample, which has much narrower

melting peak and therefore much larger cp(!) changes

with temperature. The range of acceptable periods and

underlying heating rates is given by the conditions of

stationarity, Eqs. (21) and (22).

In extremely cases of non-linear response, like

shown in Fig. 4, one can see with the naked eye that

calculated value of complex (reversing) heat capacity

would be meaningless. But this becomes visible only

because the data ®rst were recorded in time domain

and then recalculated in frequency domain. In this

experiment measuring only ®rst harmonic (i.e. calcu-

lated heat ¯ow amplitude) one could not realize high

non-linearity of the response.

One of the interesting application of TMDSC is heat

capacity spectroscopy ± measuring complex heat

capacity cp(!) at different frequencies. Varying mod-

ulation frequency one should vary whether tempera-

ture amplitude or heating rate amplitude or both of

them. Then one changes in¯uence of non-linearity on

cp(!) determination, see Eqs. (13) and (17). One also

changes in¯uence of non-stationarity on cp(!) deter-

mination, see Eqs. (19) and (20). And that is the most

important point: paying no attention on non-linear part

of the response or being fully aware that the response

is linear one could obtain very interesting frequency

dependence of complex heat capacity which arose

mainly from non-linearity or non-stationarity and is

far from real kinetics of the transition.

One can use another way to check linear response ±

to vary the amplitude of perturbation. But ®rstly: this

way one could not estimate non-stationarity; sec-

ondly: one need at least two measurements. Moreover

in AC and 3! methods, where periodic heat ¯ow

serves as a perturbation, changes in perturbation

amplitude assume some possible changes in mean

temperature or in temperature gradient in the sample.

This should be taken into account especially in transi-

tion region ± the results can be different at different

power input only due to difference in mean tempera-

ture, but not due to non-linearity.

8. Conclusion

Before speaking about the value of complex (or

reversing) heat capacity at given measurement one

should always check whether the thermal response is

linear. To do that under harmonic perturbation one can

look at higher harmonics of the response (of the

periodic heat ¯ow in case of TMDSC). There are

two reasons of presence of higher harmonics: non-

linearity and non-stationarity. Both of them in¯uence

the value of ®rst harmonic and therefore in¯uence

accuracy of complex (or reversing) heat capacity

determination. If certain accuracy is required then

one should simultaneously meet conditions of linear-

ity and stationarity.
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